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Rain: Relaxations in the sky

Ole Peters* and Kim Christensen
Blackett Laboratory, Imperial College, Prince Consort Road, London SW7 2BW, United Kingdom

~Received 27 March 2002; published 20 September 2002!

We demonstrate how, from the point of view of energy flow through an open system, rain is analogous to
many other relaxational processes in nature such as earthquakes. By identifying rain events as the basic entities
of the phenomenon, we show that the number density of rain events per year is inversely proportional to the
released water column raised to the power of 1.4. This is the rain equivalent of the Gutenberg-Richter law for
earthquakes. The event durations and the waiting times between events are also characterized by scaling
regions, where no typical time scale exists. The Hurst exponent of the rain intensity signalH50.76.0.5. It is
valid in the temporal range from minutes up to the full duration of the signal of half a year. All of our findings
are consistent with the concept of self-organized criticality, which refers to the tendency of slowly driven
nonequilibrium systems towards a state of scale-free behavior.

DOI: 10.1103/PhysRevE.66.036120 PACS number~s!: 89.75.Da, 92.40.Ea, 05.65.1b
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I. INTRODUCTION

Water is a precondition for human survival and civiliz
tion. For this reason, measurements on water resources
been recorded for several centuries. A time series from
Roda gauge at the Nile reaches back to the year 622A.D. @1#.
The main focus of analysis has historically been on statis
yielding a reliable estimate for the rainfall during the grow
season. The most obvious question to ask is in this cont
How much does it rain, on average, in the relevant mont
Questions of this type can be answered using long time
ries without high temporal resolution, and a measuremen
relatively low sensitivity may be sufficient. Entirely differen
levels of resolution and precision are needed in order to p
etrate further into the complexity of precipitation process
One might want to know just how reliable—or in fact ho
meaningful—an estimate of future rainfall based on avera
from the past is. Of course, one would ultimately like
understand the processes that make a cloud release its w
Questions of this kind point to the statistical properties
rain events rather than temporal averages.

In Sec. II we discuss the type of radar measurement
which our analyses are based. A time series of high-preci
rain rates with 1 min resolution was obtained. Section III
subsectioned and introduces the various measures we a
to the time series. In Sec. III A we introduce the fundamen
concept of rain events as sequences of nonzero rain r
which enables comparison with many other relaxational p
cesses endowed with an eventlike structure@2#. Equipped
with this concept, we investigate the statistical properties
event sizes. Over at least three orders of magnitude of e
sizes the number density is consistent with a decaying po
law, implying that there is no typical event size. We find th
the most frequent small events are considerably below
typical sensitivity threshold of standard rain gauges@3#. In
Secs. III B and III C we consider the event durations and
waiting times between successive events. The number de
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ties of both event durations and waiting times follow pow
laws. In addition, we note a nontrivial relation between t
duration and the size of events. In Sec. III D we define
binary signal in time of either rain or no rain and relate t
probability distribution of waiting times to the fractal dimen
sion of this signal. It is then speculated that the physi
reason for the lower breakdown of the observed fractal
gime at a time scale of the order of 10 min may be set by
time it takes for cloud droplets to grow into raindrops. T
upper end of the scaling region coincides with the time sc
given by passing frontal weather systems. In Sec. III E
determine the Hurst exponent of the rain signal as 0.
spanning four orders of magnitudete @10 min, 1/2 yr], ex-
tending Hurst’s result from the Nile gauge at Roda, which
valid for te @1 yr, 1080 yr#. Section IV establishes a clos
analogy between the observed characteristics and othe
laxational processes such as earthquakes and avalanch
granular media. Finally, in Sec. V we conclude that t
framework of self-organized criticality may serve as a use
working paradigm when dealing with rain.

II. MEASUREMENT

The recent developments in remote sensing techniq
have opened entirely new opportunities for rain analysis.
using radar rather than a common water gathering device
limits on rain measurements due to evaporation, sensitiv
threshold, averaging times, and accessibility can be pus
considerably@4#.

The data we used refer to a height range of 50 m at 25
above sea level and were collected from January to July 1
with the Micro Rain Radar~MRR-2!, developed by METEK
@5#. The radar is operated by the Max-Planck-Institute
Meteorology, in Hamburg, Germany on the Baltic coast
Zingst (54.43°N 12.67°E) under the Precipitation a
Evaporation Project~PEP! in BALTEX @6#. The retrieval of
the rain rate is based on a Doppler spectrum analysis
scribed by Atlaset al. @7#. At vertical incidence, the fall ve-
locity of a droplet can be identified with the Doppler shi
The friction force acting on a falling drop increases appro
mately proportionally to its surface, but the gravitation
d-
©2002 The American Physical Society20-1



th
a
ze
lc
-
-
ar

us
te
te
k
ca

d

o
en
th
d
ra
a
bl
zl
ki
w
re
t

er
o

te
av
th
ri
lm
b

ug
ig

dt
o

o
rs
in
rl
.’’
ed
s
ai
t
m

c
se
he
te
b

er
lo

aw

in-
m.

rch
eal
the
ain
ual
rt
nd

es

und
ay

now
ex-

lts
e
ant
the
the

e
igh
tly

r-
ain

hed
di-
in,

be

OLE PETERS AND KIM CHRISTENSEN PHYSICAL REVIEW E66, 036120 ~2002!
force increases proportionally to its volume. Therefore, in
atmosphere, larger drops fall faster than smaller ones,
spectral bins can be attributed to corresponding drop si
For a given drop size, scattering cross sections can be ca
lated by Mie theory@8#. Droplets are approximated by ellip
soids with known axis ratio@9#. The influence of the chang
ing air density with height is considered according to Be
@10#, and standard atmospheric conditions are assumed@11#.
Attenuation of radar waves by droplets is accounted for
ing the observed droplet spectrum of the lowest range ga
estimate attenuation for the following one. For higher ga
all observed and corrected spectra of lower layers are ta
into account. Thus, from the Doppler spectrum alone one
infer the number of dropsni of any desired volumeVi , as
well as their fall velocitiesv i . The rain rate can be calculate
instantaneously asq(t)5( iniViv i . In the time series we in-
vestigated, the continuous measurement is averaged
1-min intervals, leading to 1-min temporal resolution. Wh
the signal due to rain becomes indistinguishable from
background noise at the receiver, the rain rate is define
zero. Under the pertinent conditions, the calculated rain
was typicallyqmin50.005 mm/h, when this happened. Wh
is measured at this sensitivity threshold would proba
more sensibly be labeled as the turbulent motion of driz
through the atmosphere, rather than rain. Instead of as
whether rain can be detected, the question that arises no
what we actually mean by rain. To achieve this level of p
cision, a conventional pluviometer would have to be able
detect a water column of 83.3 nm ‘‘rain’’ spread out ov
1-min. For comparison, the diameter of a single water m
ecule is about 0.3 nm. Thinking in terms of accumula
water column in such a rain gauge and given the 1-min
eraging time, one would come to the conclusion that
smallest detectable rain event corresponds to a minute du
which on average every second, a four-molecules-thick fi
drifts down towards the ground. This, of course, would
impossible to detect. The MRR-2, however, employs
method that is not based on water hitting or passing thro
an area of a few decimeters across. Given the 50-m he
range starting at 250 m above the radar with 2° beam wi
it measures what happens to the liquid water in a volume
the order of 1000 m3, and one must bear that in mind t
understand the minimum values calculated above. Of cou
events at the radar’s sensitivity threshold are far from be
detectable by any water-collecting pluviometer and simila
far away from what we associate with the word ‘‘rain
Nonetheless, we will consider any minute with deriv
q(t).qmin as ‘‘rain,’’ and conversely, only if the radar fail
to detect any net downward motion of water through the
we will speak of ‘‘no rain.’’ We will come back to this poin
in Sec. III A. Especially for small rain rates the method e
ployed is extremely powerful.

The quantitative retrieval is restricted to rain. The refle
tion spectra of snow and hail look very different from tho
of liquid water and can be identified. But in this case t
method fails to calculate correct water masses. The la
version of the instrument recognises nonrain precipitation
an internal algorithm. The rain intensity data we used w
calculated from measurements performed while the deve
03612
e
nd
s.
u-

d

-
to
s
en
n

ver

e
as
te
t
y
e
ng

is
-
o

l-
d
-

e
ng

e
a
h
ht
h,
f

e,
g
y

r,

-

-

st
y
e
p-

ment of the instrument was still ongoing, and hence the r
data had to be checked manually.

III. DATA ANALYSIS

The months of January and February contain several
stances of snow at our chosen measuring height of 250
By far the largest snow disturbance was observed on Ma
6, from 3:49 am until 11:38 pm. The Doppler spectra rev
that the 250-m altitude was inside the melting layer, and
water column resulting from interpreting the event as r
would have been 279 mm, which is of the order of the us
rainfall of eight weeks. In June and July, five very sho
periods of extremely high calculated rain rates were fou
~see Fig. 1!. The Doppler spectra indicate two different typ
of drops with fall velocities at'4 m/s and'9 m/s. A com-
parison with the meteorological records shows that aro
these times, thunderstorms with hail or extreme rainfall m
have caused the radar to malfunction. As in the case of s
disturbances, data gathered during these periods were
cluded from the analyses in Secs. III A and III E. The resu
in Secs. III B, III C, and III D, however, refer to the entir
data set, since the value of the rain intensity is irrelev
here. To make sure that our results are not an artifact of
observed anomalies, all analyses were also performed on
clean months of April and May. No differences from th
previously obtained results were observed. Due to the h
resolution, even the ranges of validity were not significan
affected.

A. Event sizes

Previous work focused on rainfall during fixed time inte
vals and on the statistical properties of such fluctuating r

FIG. 1. The rain rate~mm/h!, averaged over 1 min, plotted
versus the time of occurrence@min since 01-01-99, 0:00#. The five
high peaks on the right-hand side of the figure, shown as das
lines, are a result of malfunctioning during extreme weather con
tions in thunderstorms. They correspond to 75 out of 266 611 m
which is so small a fraction that none of our results would
significantly altered by their inclusion.
0-2
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RAIN: RELAXATIONS IN THE SKY PHYSICAL REVIEW E 66, 036120 ~2002!
intensities. Other studies addressed distributions of wet
dry spells@see, e.g., Ref.@12##. The fundamental method o
the present study is to acknowledge the eventlike structur
rain @2#. Events are defined as a sequence of nonzero
rates, and their sizeM5( tq(t)Dt, with Dt51 min, is the
accumulated water column during the event. The interval
zero rain rate between events are called drought periods.
perspective is motivated by work on other natural pheno
ena, such as earthquakes, where one is mainly intereste
the events. While the entire agricultural sector depends o
sufficient amount of rain spread out over the months of
growing season, no one depends on the average sea
flow of energy through the earth’s crust. Due to this diffe
ence in anthropogenic interest, the two perspectives h
been used almost entirely separately in the respective fie
Owing to the precision and high temporal resolution of t
data, an investigation into the fine structure of rain eve
was made possible, and the results are strikingly clear. Fig
2 shows the number density of rain events per yearN(M )
versus event sizeM on a double logarithmic plot. In a scalin
regimeMmin,M,Mmax extending over at least three orde
of magnitude, the distribution follows the simple power la

N~M !}M 2tM, tM'1.4. ~1!

This implies that a typical scale of events does not ex

FIG. 2. The number densityN(M ) of rain events versus the
event sizeM ~open circles! on a double logarithmic scale. Even
are collected in bins of exponentially increasing widths. The ho
zontal position of a data point corresponds to the geometric mea
the beginning and the end of a bin. The vertical position is
number of events in that bin divided by the bin size. To facilita
comparison with future work, we rescaled the number of event
annual values by dividing by the fraction of a whole year duri
which the data were collected. The experimental data are consi
with a power lawN(M )}M 2tM,tM'1.4 ~solid line! over at least
three orders of magnitude,M e @Mmin ,Mmax# with Mmin'5
31023 mm and Mmax'35 mm. The arrow indicates the typica
sensitivity threshold of a conventional high-precision tipping buc
rain gauge. We can see not only that the radar technique is rou
10 000 times more precise, but also that a considerable fractio
rain events will surely be missed with conventional methods.
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and scale invariance prevails. In the scaling region, if
compare the frequency of events of sizeM to that of events
of sizekM we obtain the same fraction, independent ofM.
From Eq.~1!, it follows that

N~M !/N~kM!5ktM, Me@Mmin ,Mmax#. ~2!

But Fig. 2 contains even more information. For even
smaller thanMmin'531023 mm the power law breaks
down. This is indicative of a different physical process bei
responsible for events in this realm. Within the scaling
gime, events of all sizes look alike when compared to oth
Hence there is no reason to assume different physical orig
We will later substantiate the suggestion that this comm
origin is sudden relaxation, bursts of intermediately sto
energy leaving the atmosphere. Where the power law bre
down, a different type of process sets in. Events smaller t
Mmin might be due chiefly to the inner dynamics of the a
mosphere. Virga, drizzle that evaporates before reaching
ground, is difficult to interpret from the event perspectiv
Drizzle can form within clouds but immediately reevapora
Commonly, the distinction between cloud droplets and r
drops is made in terms of diameter. When the droplet dia
eter surpasses 0.1 mm one speaks of rain drops. This de
tion reflects a physical separation apparent from a gap in
drop size distribution around 0.1 mm diameter@13#. Fringes
of virga, half cloud and half rain, may be the explanation
events smaller thanMmin in Fig. 2. Indicated by an arrow in
Fig. 2 is the typical sensitivity threshold 0.1 mm of hig
precision tipping bucket rain gauges. The value 0.1 mm
widely used as the definition of zero precipitation@3#. Given
that our interpretation of the breakdown of the power law
correct, and every rain event withM.531023 mm is actual
rain, it is evident that measurements with today’s stand
precision simply do not see a considerable fraction of
rain events. Questions regarding the fine structure of rain
the actual physical processes involved are then hard to
dress. With the radar measurement, on the other hand
rain seems to be captured and we can choose a suitable
(Mmin) below which events are ascribed to a different phy
cal process.

To ascertain that we are capturing the entire physica
relevant range of observables of the process of rain, i
evidently necessary to use observational techniques tha
able us to see beyond the physical limits of rain. Resu
from investigations that do not fulfill this requirement cann
be conclusive and must be treated with careful skeptici
The present study suggests a reasonable maximum sen
ity threshold of around 531023 mm, which is one-twentieth
of the commonly used threshold.

Assuming Eq.~1!, we can easily calculate the numb
N(M.M1) of expected events exceeding a given massM1,

N~M.M1!}E
M1

`

M 2tMdM5
1

tM21
M1

2tM11 . ~3!

It follows that
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OLE PETERS AND KIM CHRISTENSEN PHYSICAL REVIEW E66, 036120 ~2002!
N~M.M2!5N~M.M1!S M2

M1
D 2tM11

. ~4!

Since we know how many events there are withM.M1
5Mmin , Eq. ~4! can be used to estimateN(M.M2), where
M2.Mmin . We observed ten events in the largest nonem
bin ranging from 17 mm to 35 mm, but from extrapolatin
the power law as outlined above, we would observe ano
ten events in the following bin ranging from 35 mm
70 mm. In total we would expect to see 38 events larger t
the largest event that was actually observed. We there
conclude that the sudden upper cutoff apparent in Fig.
not due to the limited time of observation, but rather refle
a physical limit to the process of rain at the given locatio
We defineMmax as the largest event in the data set; a dow
pour of Mmax[35 mm of rain.

B. Event duration

The number density of events versus event durationTE
was found to approximate a power law~see Fig. 3!:

N~TE!}TE
2tE , tE'1.6. ~5!

To highlight the implications of this result, we consider t
simplest form of a precipitation model. Naively, one mig
divide the number of minutes with measured rain by the to
number of minutes observed, and simply use this fraction
the rain probabilityprain in every minute. About 8% of the
minutes we observed contain rain. Therefore, the probab
for two successive rain minutes would beprain

2 50.0064, and
for five successive minutes, it would already be negligib
Any model based on independent events produces chara
istic time scales. In this case, one of the characteristic t
scales would be the typical rain durationt r . The probability

FIG. 3. The measured distribution of event durations~open
circles!. The data are consistent with a power-law decay~solid line!.
The exponent oftE'1.6 is greater than that of the event size d
tribution, implying a nontrivial relation between event duration a
the rain rate during the event.
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for a rain event of durationTE is given by p(TE)5prain
TE .

This can be rewritten asp(TE)5e2TE /tr, where t r is the
characteristic rain duration, which hardly any events will s
pass. It follows thatt r52@1/ln(prain)#'24 s.

But the measured distribution is qualitatively differen
Not only does the power-law-like number density allow f
events longer than 1000 min, but no typical duration is fou
at all. We do not observe an exponential distribution of a
kind.

The exponent in the power law relating the duration
events to their frequency is different from that for the eve
sizes. This implies a nontrivial relationship between the d
ration and the average rain rate during an event. If we co
simply assume an average rain rate, equal for all rain eve
the size would be proportional to the duration and the dis
butions would have the same exponent. Apparently, lon
rain events are more intense.

The statistical support for a difference between the ex
nents of event size and duration is not very strong but
results shown in Fig. 4 reinforce this conjecture. Figure
shows the average event size plotted versus event dura
and an exponent slightly greater than 1 is observed. This
crude and somewhat forced measure to apply but it yie
results that are qualitatively consistent with Figs. 2 and
since if the average event size increased proportionally to
duration, the observed exponent would be 1.

C. Drought duration

In Fig. 5, the probability distribution of drought duration
N(TD) is shown to follow a power law:

N~TD!}TD
2tD , tD'1.4. ~6!

FIG. 4. The event size versus event duration. The dots repre
single events of the corresponding duration. For each duration
average of the single dots is evaluated~dashed line!. Up to about
200 min the average event size^M &(t) increases to a good approx
mation likeT1.2 ~solid line!. An exponent greater than 1 is consi
tent with Figs. 2 and 3. Hence, on average the rain rate was gre
for long events.
0-4
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RAIN: RELAXATIONS IN THE SKY PHYSICAL REVIEW E 66, 036120 ~2002!
No cutoffs were apparent. The power law is a good
proximation from the minimum~1 min! all the way to the
maximum ~two weeks! of the observed drought duration
The only observed deviation at droughts of around one
in length is due to the daily meteorological cycle. As for t
event durations, this behavior clearly implies correlation.
can define the drought probability aspdrought512prain .
Hence all the arguments in Sec. III B apply to drought du
tions, too. Withpdrought replacingprain , the typical drought
duration td52@1/ln(pdrought)#'12 min. The dashed line in
Fig. 5 was generated by another method. Instead of trea
minutes as the independent entities, we determine the ra
which rain events start by dividing the number of minutes
the number of rain events. This treatment takes into acco
the clustering of zero rain rates on the time axis, i.e.,
persistence of droughts, but it cannot pay tribute to the
pendencies that produce the real power-law behavior
arithmetic, rather than exponential behavior persists for m
than two weeks then rain rates at timest1 and t2 two weeks
apart still cannot be treated as independent.

Adding the persistence of rain to that of droughts, t
signalq(t) can be modeled with a two-state Markov proce
One then defines transition probabilities from rain to drou
and drought to rain, consistently with the fraction of to
rain and drought times. In this case, typical drought and r
durations can be chosen. Persistence is now accounted
but the probability for observing drought or event duratio

FIG. 5. The open circles show the number densityN(TD) of
drought periods per year versus the drought durationTD . The solid
line represents a power-law approximation, with exponenttD

51.4, to the observed distribution. The arrow indicates one d
around which a deviation from pure power-law behavior can
observed. This is due to the daily meteorological cycle. For co
parison, a Poisson process, yielding an exponential distributio
waiting times, was fitted to the data~dashed line!. The rate of events
l is defined as the total number of observed rain eventsNtotal

divided by the total time of observationt total . The number of
events is then normalized to annual values. The Poisson pro
would give a number densityN(10 000 min)51.2310218 ~not
shown!. Clearly, the observed values are incompatible with such
uncorrelated process.
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above these characteristic time scales would still decay
ponentially, while remaining constant for shorter events a
droughts~see Fig. 5!. This is incompatible with the observe
distributions for both the drought durations and the ev
durations. The following section will strengthen this res
further.

D. Fractal dimension

A fractal @see, e.g., Ref.@14## is a structure displaying
scale invariance of the type mentioned in Sec. III A. Zoo
ing into a fractal with a factor ofb and then rescaling the
coordinate system with a factor ofbdf , wheredf is called the
fractal dimension, leaves the structure unchanged. Frac
often occur naturally, in which case the unchanged prope
is usually a statistical one. The rain data are from one fix
location but they span a long period of time. We define
binary signal—either rain or drought—and determine
fractal dimension in time, using the box counting metho
different lengthsl of time intervals~boxes! are used to cover
the rainy sections on the time axis. The number of bo
n( l ) needed to cover the rain is proportional tol 2df .

The results are displayed in Fig. 6. In the doub
logarithmic plot we find anS-shaped curve. The dashed line
indicate two regimes with trivial slope,df51, and the solid
line a nontrivial regime wheredf'0.55.

Consider again the simple model with the two-state M
kov chain. As long as the box size is below the typical ra
duration, the number of boxes needed to cover the rain
creases trivially; they are used to fill the compact space
the rain events. When the typical rain duration is pass
each rain event is essentially covered by one box and
number of boxes remains constant. As the box size
proaches the typical length for droughts, the entire durat
of the measurement is filled, and the number of boxes be

y,
e
-
of

ss

n

FIG. 6. The number of time intervals~boxes! needed to cover
the rain versus the box size. The fractal dimensiondf is minus the
slope of this function in a double logarithmic plot.df'0.55 in a
scaling regime spanning two orders of magnitude. Outside the s
ing regime it assumes the trivial value 1.
0-5
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OLE PETERS AND KIM CHRISTENSEN PHYSICAL REVIEW E66, 036120 ~2002!
to decrease in the trivial fashion again. The only way
obtain a nontrivial fractal dimension is to have, in a sen
typical droughts at all time scales. This amounts, of cou
to having no typical drought duration at all. Mathematical
this scale freedom is represented by the power-law distr
tion of drought durations. The number of boxes needed
cover the rain signal will be the true rain duration plus t
time spanned by droughts that are shorter than the box
~these will be overlooked!, all divided by the box size
Hence, apart from a constant, representing 8% of the t
time, the timeTc spanned by the boxes to cover the rain w
increase withl as Tc5*0

l N(TD)TDdTD}*0
l TD

21.42TDdTD ,
which is implied by Fig. 5. Evaluating the integral, we ha
Tc} l 0.58. The number of boxes needed isTc / l 5 l 20.42. In
this sense a fractal relation such as the one shown in Fi
could be a consequence of a power-law distribution
drought durations as in Fig. 5. It is the scale-freedom t
stretches the transition between the regime where the tem
ral resolution suffices to register the droughts and the reg
where it does not. The values we measure suggest that
is more to the rain–no rain signal than just the power law
interoccurrence times. Deducing the fractal dimension fr
the drought distribution only, we would expect a value
0.42. But we observe 0.55, and the difference appears t
significant.

The scaling regime extends from a lower limit around
min to an upper breakdown near 3–4 days. While one m
expect the fractal regime to span further for longer time
ries, the analysis of a 30-yr time series from Uccle@12# sug-
gests that the observed breakdown is not an artifact of
shortness of our data set. The authors place the cutoff a
days, which coincides with our value. Apparently, the cor
lation that gave rise to the fractal relation does not hold
longer than 3.5 days. Investigation of time series from D
mark with 1-day resolution, collected from 1876 until 200
@15#, suggests that the power law for droughts does not h
for drought durations exceeding the upper cutoff in the fr
tal dimension.

The explanation for the upper cutoff of the fractal regim
may be that the typical duration of a frontal system mov
in from the Atlantic is of the order of 3 days. Measured ra
parameters will not belong to the same frontal system if
measurements are temporally separated by significantly m
than 3 days. The lower breakdown around 10 min could
be observed in the Uccle time series since there the temp
resolution was only 10 min. We are still unsure as to how
interpret this lower breakdown. Clearly, there must be
lower breakdown somewhere, and we expect it to oc
where the particular kind of correlation that gave rise to
fractality on hourly to daily time scales ceases. The low
breakdown indicates that 10 min is a time scale that is s
cial, and it must be related to a physical process. The mi
physical processes of coagulation that trigger a cloud to
lease its water content take place on this time scale. Sta
with typical small cloud droplets with radiusr'1023 mm,
the process of stochastic collection during which small dr
lets merge to form rain drops of appreciable fall veloc
takes roughly 10–30 min under typical warm cloud con
tions @16#. It is possible that coagulation starts at a cert
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level inside a cloud and then pauses at that level befor
single drop has left the cloud. If it then starts again, it
possible that on the ground we observe two layers of r
separated by a vertical distance corresponding to up
'10 min fall time. While these seem to be two differe
events, from the cloud’s perspective it is really only on
since the process of releasing water did not stop at any
ment everywhere within the cloud. Effects of motion of th
cloud relative to the ground are not included in these con
erations. It is unlikely that the 10-min time scale is a result
the employed measurement technique. The radar only p
up drops with appreciable fall velocity,v.0.5 m/s. Thus the
limit on the time resolution, given by the vertical extensio
of the scattering volume, is 50 m/0.5 (m/s)5100 s, for the
slowest drops.

E. Hurst exponent

In an attempt to determine the necessary size of a w
reservoir that would never empty or overflow, Hurst@1# con-
sidered an incoming signalq(t), corresponding to the rain
intensity in our case, that causes the level of a reservoi
rise or fall. Using our data, the deviation from the avera
water level in an imaginary reservoir would be

X~ t,t!5 (
u50

t

@q~ t !2^q&t#Dt, ~7!

whereDt51 min and

^q&t5
1

t (
t51

t

q~ t !. ~8!

The quantity^q&t in Eq. ~7! can be thought of as an
average outflux from the reservoir and ensures that for
period t the water level starts and ends at zero. Ove
trends during the intervalt are thus eliminated. Figure 7
showsX(t,t) as derived from the data set in Fig. 1.

The range of water levels that the reservoir has to all
for is then given by

R~t!5 max
1<t<t

X~ t,t!2 min
1<t<t

X~ t,t!. ~9!

Hurst determined the dimensionless ratioR(t)/S(t) as a
function of t, whereS(t) is the standard deviation of th
influx q(t) in the periodt. It can be shown that ifq(t) is any
random signal with finite variance@17#, this ratio increases
as

R~t!/S~t!}tH, ~10!

whereH51/2 is called the Hurst exponent. Hurst’s analys
of data from the Roda gauge at the Nile, however, yielde
different exponent ofH'0.77. This unexpected result i
commonly interpreted as a sign of persistence in the sig
or even as correlation. The exponent obtained from perfo
ing the same analysis on our data isH'0.76 ~see Fig. 8!.
Hence, the fluctuating rain rate alone produces an anoma
Hurst exponent, and the result obtained by Hurst is valid
0-6
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RAIN: RELAXATIONS IN THE SKY PHYSICAL REVIEW E 66, 036120 ~2002!
only for the range of 1 yr,t,1080 yr that he considere
but in fact also holds fort 5 a few minutes tot51/2 yr.
Interestingly, the Hurst exponent deviates from this relat
for t,10 min, which is of the same order as the observ
short-time trivial regime of the fractal dimension.

To understand more precisely what is actually measu
by the Hurst exponent, we applied the same method t
signal generated by swapping events and droughts at
dom. We kept the sizes and durations of rain events

FIG. 7. Water levelX(t,t) in mm in an imaginary reservoir fo
t5266 611 min, as derived from Fig. 1. During drought periods
constant, slow decrease in the water level is observed, while du
rain events the water level increases rapidly. The necessary size
sufficiently large reservoir is given by the rangeR(t) indicated by
a dashed line.

FIG. 8. The dimensionless ratioR(t)/S(t) versus t ~open
circles! shown on a double logarithmic scale. The slope of the fit
straight line ~solid! reveals the anomalous Hurst expone
R(t)/S(t)}tH with H'0.76. The data deviate from the power-la
fit below t'10 min in the lower limit, but no upper limit of the
relation is observed.
03612
n
d

d
a
n-
d

droughts as determined from the real data and pasted t
one after the other in random order. The Hurst exponent
not altered by this procedure. In this sense it is not a mea
of correlation since it is not affected by the order in whi
events occur. In exactly what sense it measures persisten
part of our ongoing research.

IV. CONTEXT

Self-organized criticality offers the appropriate fram
work for dealing with relaxational processes with burstli
behavior whose statistics are determined by scale invar
power laws@18,19#. The term self-organized criticality refer
to the tendency of many systems driven by an energy inpu
a slow and constant rate to enter states characterized
scale-free behavior. The statistics of the system then
semble those of a closed system near the critical point o
phase transition.

A well-known example of such a process is the ene
flow through the lithosphere, including the outermost crus
Earth. Tectonic plates are driven at a slow rate by current
the asthenosphere, the liquid part below the lithosph
which transports heat by currents. The energy transferre
the plates is intermediately stored in the form of tension u
it is finally released in an earthquake. Earthquake statis
follow the Gutenberg-Richter power law that relates the se
mic moment, a measure of the released energy, to the p
ability of such an earthquake@20#. Rather than a typical size
with exponentially fewer larger than smaller quakes, sc
invariant behavior is observed. Similar behavior has be
observed in acoustic emission from volcanic rock, whi
may be related to volcanic explosions@21#.

Given the right grain shape, rice piles exhibit se
organized critical behavior@22,23#. Potential energy is adde
to the system by dropping rice grains onto the pile at a s
and constant rate. Due to the friction between individu
grains, the pile builds up until its slope reaches a criti
value. In this critical state, within the limits set by the syste
size, avalanches of all sizes are observed. During an
lanche, potential energy that was intermediately stored in
system is suddenly released in the form of heat. The dis
bution of energy release is once more a power law.

Experiments on droplet avalanches show that s
organized criticality need not be restricted to granular me
@24#. Thresholds that enable the accumulation of energy
fore the release are given by surface tension and inter
friction with other media. Scale-free avalanches have a
been reported of vortices in a superconducting mate
@18,25,26#.

Rain showers share many of the features of the abo
mentioned systems~see Table I!. Two well-separated time
scales are present: The durations of drought periods, du
which water evaporates, range up to months, while r
events take place on a much shorter time scale. The at
sphere receives a slow and constant energy input from
Sun’s radiation. The absorbed energy evaporates water f
the surface, which is intermediately stored in the atmosph
Note the analogy between liquid water in the atmosphe
tension in tectonic plates, and mass above the ground lev

a
ng
f a

d
:
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TABLE I. Rain events are analogous to a variety of relaxation processes in nature. The two best
examples of such processes, earthquakes and avalanches in granular media, are summarized below

System Crust of Earth Granular pile Atmosphere

Energy source Currents in asthenosphere Addition of grains Sun
Energy storage Tension Gravitational potential Evaporated wate
Threshold Friction Friction Saturation
Release of energy Earthquake Avalanche Rain event
th
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a granular pile. During a rain shower, the water mass
was slowly evaporated into the atmosphere, is suddenly
leased, and with it the original evaporation energy, i.e.,
condensation energy. The power law observed for the
distribution of rain events is perfectly equivalent to t
Gutenberg-Richter law in earthquake statistics. Just as p
of the lithosphere do not move smoothly along, there is
constant light rainfall balancing the evaporated water m
immediately at every moment in time. Rain events are rel
ations in the sky.

V. CONCLUSION

New insight into the working of rain can be gained b
defining rain events, which can be regarded as energy re
ations similar to earthquakes or avalanches. Taking this
spective, scale-free power-law behavior is found to gov
the statistics of rain over a wide range of time- and eve
size scales. Where clear deviations from the observed po
laws and fractal dimensions are found, the limits and pe
liarities of the underlying dynamical system become app
ent, and physical insight is gained. Rainfall time series c
not be reproduced by conventional methods of probab
theory. To enable anything more than an explicit reprod
tion of the fractal properties, a deeper understanding of s
re
s

s.

e
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hy
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organizing processes leading to fractality must be sou
Our findings suggest that rain is an excellent example o
self-organized critical process. Rain is a ubiquitous pheno
enon, and data collection is relatively easy. It is theref
well suited for work on self-organized criticality. For ou
purposes, the remote sensing technique employed by
MRR-2 has proved extremely powerful. The radar is capa
of even higher temporal resolution than 1 min, limited on
by the finite vertical extension of the scattering volume, a
achieves outstanding precision in the low-intensity lim
Comparison with data from other measuring sites, especi
from warmer regions without snow and regions with mo
periodic climate would be useful in order to answer qu
tions regarding the universality of the observed features.
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